

SMBB770-1100-02

High Power Top LED

SMBB770-1100-02 is an AlGaAs LED mounted on copper heat sink with a 5x5mm package. These devices are available to be operated and 1800mW/sr at IFP=2A.

<Specifications>

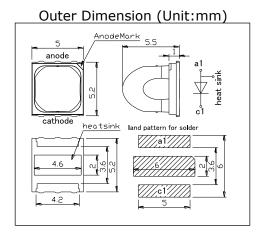
Product Name: High Power Top LED
Type Number: SMBB770-1100-02

3. Chip:

- Chip Material: AlGaAs

- Chip Demension: 1000um x 1000um

- Chip Number: 1pcs


- Peak Wavelength: 770nm typ.

4.Package

- Lead Frame Die: Silver Plated on Copper

- Resin Material: PA9T Resin

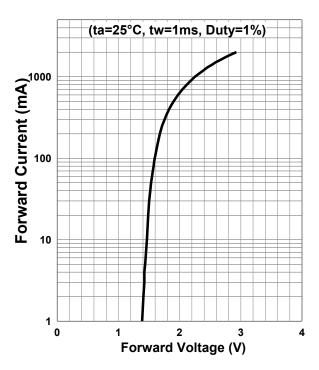
- Lens: Silicone Resin

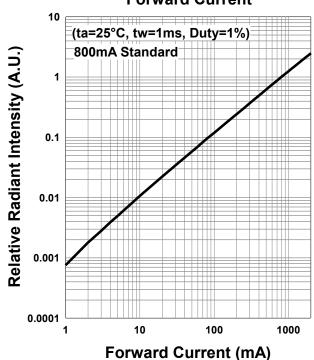
Absolute Maximum Ratings [Ta=25°C]							
Item	Symbol	Maximum Rated Value	Unit				
Power Dissipation	PD	2000	mW				
Forward Current	IF	800	mA				
Pulse Forward Current*	IFP	2000	mA				
Reverse Voltage	VR	5	V				
Thermal Resistance	Rthja	10	K/W				
Junction Temperature	Tj	120	°C				
Operating Temperature	TOPR	-40 ~ +100	°C				
Storage Temperature	TSTG	-40 ~ +100	°C				
Soldering Temperature**	TSOL	250	°C				

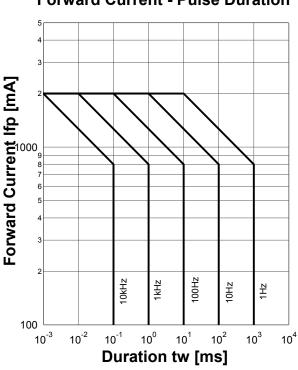
^{*} Duty=1% and Pulse Width=10us

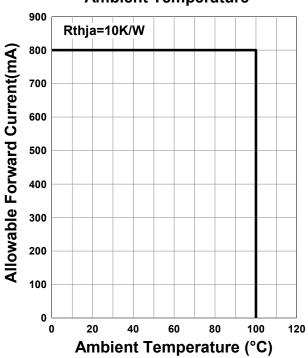
^{**} Soldering condition must be completed within 5 seconds at 250 $^{\circ}\text{C}$

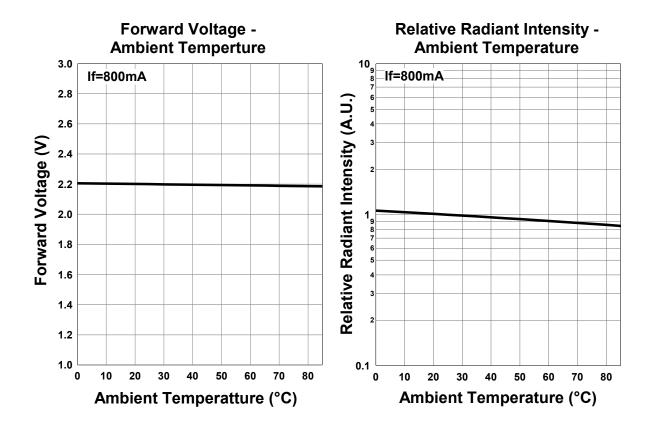
Electro-Optical Characteristics [Ta=25°C]									
Item	Symbol	Condition	Minimum	Typical	Maximum	Unit			
Forward Voltage	VF	IF=800mA		2.2	2.5	V			
	VFP	IFP=2A		3.0					
Total Radiated Power*	PO	IF=800mA		330		mW			
		IFP=2A		820					
Radiant Intensity**	IE	IF=800mA		760		mW/sr			
		IFP=2A		1800					
Peak Wavelength	λР	IF=800mA	760	770	780	nm			
Half Width	Δλ	IF=800mA		30		nm			
Viewing Half Angle	θ1/2	IF=100mA		±10		deg			
Rise Time	tr	IF=800mA		60		ns			
Fall Time	tf	IF=800mA		60		ns			

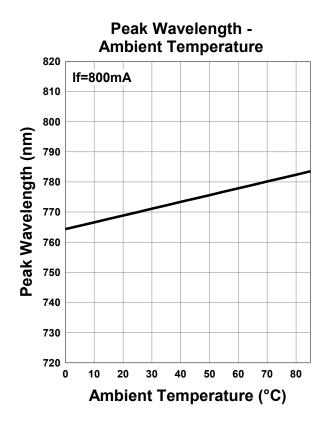

^{*} Measured by S3584-08


^{**} Measured by Tektronix J-6512

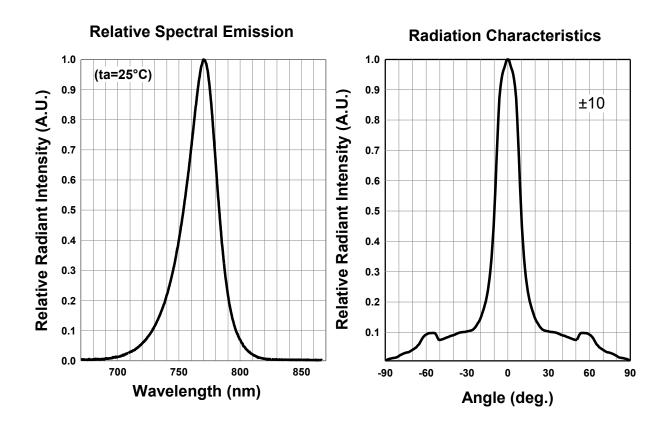

Forward Curent - Forward Voltage


Relative Radiant Intensity - Forward Current


Forward Current - Pulse Duration



Allowable Forward Current - Ambient Temperature



Wrapping

Moisture barrier bag aluminum laminated film with a desiccant to keep out the moisture absorption during the transportation and storage.

SMD LED STORAGE AND HANDLING PRECAUTIONS

<Storage Conditions before Opening a Moisture-Barrier Aluminum Bag>

• Before opening a moisture-barrier aluminum bag, please store it at <30°C, <60%RH. Please note that the maximum shelf life is 12 months under these conditions.

<Storage Conditions after Opening a Moisture-Barrier Aluminum Bag>

- After opening a moisture-barrier aluminum bag, store the aluminum bag and silica gel in a desiccator.
- After opening the bag, please solder the LEDs within 72 hours in a room with 5 30°C, <50%RH.
- Please put any unused, remaining LEDs and silica gel back in the same aluminum bag and then vacuum-seal the bag.
- It is recommended to keep the re-sealed bag in a desiccator at <30%RH.

<Notes about Re-sealing a Moisture-Barrier Aluminum Bag>

• When vacuum-sealing an opened aluminum bag, if you find the moisture-indicator of the silica gel has changed to pink from blue (indicating a relative humidity of 30 % or more), please do not use the unused LEDs, the aluminum bag, or the silica gel.

<Notes about Opening a Re-sealed Moisture-Barrier Aluminum Bag>

- When opening a vacuumed and re-sealed aluminum bag in order to use the remaining LEDs stored in the bag, if you find that the moisture-indicator of the silica has changed to pink, please do not use the LEDs.
- *The 72-hour- long floor life does not include the time while LEDs are stored in the moisture-barrier aluminum bag.

However, we strongly recommend to solder the LEDs as soon as possible after opening the aluminum bag.

Disclaimer

Product specifications and data shown in this product catalog are subject to change without notice for the purposes of improving product performance, reliability, design, or otherwise.

Product data and parameters in this catalog are typical values based on reasonably up-to-date measurements. Product data and parameters may vary by user application and over time.

Products shown in this catalog are intended to be used for general electronic equipment. Products are not guaranteed for applications where product malfunction or failure may cause personal injury or death, including but not limited to life-supporting / saving devices, medical devices, safety devices, airplanes, aerospace equipment, automobiles, traffic control systems, and nuclear reactor control systems.

2013.06